7w^2+5=z^2

Simple and best practice solution for 7w^2+5=z^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7w^2+5=z^2 equation:


Simplifying
7w2 + 5 = z2

Reorder the terms:
5 + 7w2 = z2

Solving
5 + 7w2 = z2

Solving for variable 'w'.

Move all terms containing w to the left, all other terms to the right.

Add '-5' to each side of the equation.
5 + -5 + 7w2 = -5 + z2

Combine like terms: 5 + -5 = 0
0 + 7w2 = -5 + z2
7w2 = -5 + z2

Divide each side by '7'.
w2 = -0.7142857143 + 0.1428571429z2

Simplifying
w2 = -0.7142857143 + 0.1428571429z2

Reorder the terms:
0.7142857143 + w2 + -0.1428571429z2 = -0.7142857143 + 0.1428571429z2 + 0.7142857143 + -0.1428571429z2

Reorder the terms:
0.7142857143 + w2 + -0.1428571429z2 = -0.7142857143 + 0.7142857143 + 0.1428571429z2 + -0.1428571429z2

Combine like terms: -0.7142857143 + 0.7142857143 = 0.0000000000
0.7142857143 + w2 + -0.1428571429z2 = 0.0000000000 + 0.1428571429z2 + -0.1428571429z2
0.7142857143 + w2 + -0.1428571429z2 = 0.1428571429z2 + -0.1428571429z2

Combine like terms: 0.1428571429z2 + -0.1428571429z2 = 0.0000000000
0.7142857143 + w2 + -0.1428571429z2 = 0.0000000000

The solution to this equation could not be determined.

See similar equations:

| 6(n+2)=20 | | 24=5/9(F-32) | | x(8)=24(x-12) | | 20x=(x+5)(x+5) | | 5y-7=y+173 | | 10(v+3)-2v=2(4v+3)-13 | | 6x+20=-20 | | 4/5x-8/511/15-1/5x | | 5y+9=y-139 | | (x-4)/9=7/18 | | 4c=128 | | m=-p+4m+7mn | | s/11=3 | | 10(v+3)-2v=2(v+3)-13 | | 8-3(x+2)=13(x+5)-45 | | -89=-3(6x+3)-2x | | -6y-2+8y+6=32 | | 8(v+3)-2v=3(2v+3)-10 | | M+7m+m+7m= | | 15b-b= | | X+3(2-5x)=x-(1-3) | | X+44+2x+x+22+2x-12=360 | | -4(x+2)+2x=2(2x+2)-12-4x | | -8x+4x-6=60 | | X-5.8=13.6 | | 6=5+m | | w+9-4(w-2)=0 | | 7f+f=32 | | 3(2x-5)=-(x+1) | | 5d+5d+d+d= | | 2+z=12 | | 3x-3+4x+4x+4x-12=360 |

Equations solver categories